
Onboarding Document

Knowns:

●​ Developed in C#
●​ Team has been solely focussing on application features
●​ Application runs on local machines
●​ Application expected to handle millions of active players per day
●​ Application mandated to run on Kubernetes
●​ It’s only been tested in isolated development environments
●​ Post-Launch, team is expected to independently manage application lifecycle

Phase 1: Planning and Initial Bootstrap
●​ Initial assessment of the app is completed
●​ I am aware of resource requirements[CPU, Memory, SSD I/O, NW bandwidth],

target regions. Resource reservations and quota securing requests have already
been made.

●​ Networking configuration, VPCs, subnets and IP address space allocations, ACLs,
firewall rules in place.

●​ Storage Solutions: Set up buckets for storing cores, terraform states, assets,
binaries.

●​ Access Control and IAM configurations implemented to ensure the right people
have access to the right dashboards, tools and environments.

●​ Meeting #1 :
○​ Introduce containerization: Guide them on how to create Dockerfiles

optimized for production.
○​ Walk them through Kubernetes fundamentals: Pods, Deployments,

Services, ConfigMaps, Secrets.
●​ Containerize the app, upload the image to a private image repository
●​ Meeting #2:

○​ Introduce IaC concepts and explain benefits
○​ Walk through a sample and show savings in time and toil

●​ Infrastructure as Code : source controlled configuration code written in terraform
(with Terragrunt wrapper) and its deployment automation being actively worked on.

●​ Kubernetes manifests and scaling strategy is actively being worked on, with
results from stress tests instrumented into the configuration

●​ Relevant namespaces, environments have been set up to support QA and stress
testing.

●​ Meeting # 3:
○​ Introduce CI/CD with the chosen tool

○​ Show sample jobs and the time saved, toil avoided
●​ Work has begun on setting up CI/CD Pipelines for build, push-to-dev env, QA,

push to prod env
●​ Meeting #4:

○​ Introduce Auto-Sync and Rollback mechanism
○​ Schedule a stress test to demonstrate a real-world scenario
○​ Scaling strategy - whether to use HPA or scale the cluster with more worker

nodes.
○​ Introduce database management concepts and best practices - connection

pooling, sharding and redundancy
●​ Work has begun to set up contingency plans and rollback options
●​ Meeting #5:

○​ Introduce Monitoring and show sample metrics being instrumented
○​ Introduce Logging and show how to triage issues
○​ Introduce Alerting and show how to set thresholds
○​ Introduce Visualizations and show how to build dashboards, write queries

●​ Work has begun to instrument logging and mechanism to set up alerts.
●​ Work has begun to identify metrics, workshop visualizations and dashboards
●​ Meeting #6:

○​ Introduce automated management of certificates, secrets
○​ Introduce load-balancing concepts and what HA looks like for our

application
●​ Requests for certificate renewals, DNS changes, load-balancer and HA

requirements
●​ Meeting #7:

○​ Invite security expert and demonstrate the effects of lax security
○​ Provide samples of good security practices

●​ Security analysis of application conducted by Security Team

Phase 2: 1 Month before launch
●​ CI/CD already set up for build, push and kubernetes deployment
●​ Monitoring, Logging and Alerting tools are already instrumented
●​ Visualizations, dashboards have been set up for specific audiences
●​ Submit cost forecast report to the executive board to keep them informed
●​ Ensure 20-30% burst capacity of launch-limits to ensure we have room to scale.
●​ Alert thresholds codified, escalation policies set up
●​ Additional firewall rules, subnets and other network policies accounted for and

implemented.
●​ Additional stress tests on infra-scaling (cluster autoscaler or terraform based

manual scaling)
●​ App SLOs implemented: Availability, Latency, Error Rate
●​ Player facing SLOs identified and queries written to instrument the SLIs.

Phase 3: Two Weeks before launch
●​ Wind down stress tests
●​ Schedule code-freeze
●​ On-call rotation schedules codified.
●​ Plans for emergency patches in place.

Phase 4 : Launch Week
●​ War Room presence
●​ Serve as primary-on-call and point of contact between dev team and infrastructure

team
●​ Have a member of the dev team shadow as secondary on-call
●​ Jump into outages and incidents to triage and bring the service back to healthy state
●​ Keep stakeholders informed with full transparency of impact, and time-to-resolve
●​ Prioritize people’s health and wellbeing – launch weeks can be stressful but don’t

need to be. Creating an environment of safety and excitement is of utmost
importance.

Phase 5 : Post Launch Tasks
●​ Generate launch report : traffic, deployments, revenue, engagement
●​ Blameless Post Mortem on any incidents: what went well, what can be improved

on.
●​ Office hours for additional support
●​ Identify and codify process for - hotfixes, patching, seasonal-time based events

 Documentation & Runbooks:

●​ Create on-call playbooks for common failures.
●​ Document CI/CD workflows and Kubernetes manifests.
●​ Provide troubleshooting guides for scaling and performance issues.

Training & Hands-On Workshops:

●​ Conduct Operations training for developers.
●​ Assign Kubernetes ownership roles within the team.
●​ Encourage developers to monitor dashboards & logs proactively.
●​ Encourage observability-driven development.
●​ Establish a blameless postmortem culture for outages.

Production Readiness Checklist
Item Tools/Language

Used
Status Notes

Application Code C# - DotNet In Use Provided

Source Control Github In Use Assumption

Unit Testing Dotnet test and
xUnit

In Use Assumption

Local Build Dotnet CLI In Use Assumption

Build Pipeline Github Actions NA Chosen for exercise

Push Pipeline Github Actions NA Chosen for exercise

Image Repository Docker-Hub NA Chosen for exercise

Image Testing Trivy and Snyk NA Chosen for exercise

Infra Node SKU GCP (N2, C2, M2) NA TBD

Infrastructure as
Code

Terraform with
Terragrunt wrapper

NA Chosen for exercise

Kubernetes GKE NA Chosen for exercise

Manifest
Management

Helm NA Chosen for exercise

Continuous Delivery ArgoCD NA Chosen for exercise

Secrets
Management

Vault or External
Secrets Operator

NA Chosen for exercise

Certificate
Management

Cert-Manager Helm NA Chosen for exercise
Assumption:
company has a
Certificate Authority
and ACME protocol
compliant

Scaling HPA and Cluster
Autoscaling

NA Based on CPU and
Memory % targets

Stress Testing In house
tool/QA/Simulations

In Use Assumption

Data Cache Redis In Use Assumption

Database SQL based NA Assumption

Load Balancing GCP loadbalancer
(internal/external)

NA Chosen for exercise

Ingress NGINX Ingress NA TBD

RBAC (SecOps)
and IAM

GCP Service
Accounts, Users
and Groups with
right roles, Kube
Service Accounts

NA TBD

Monitoring Prometheus NA Chosen for exercise

Visualization Grafana NA Chosen for exercise

Logging Loki NA Chosen for exercise

Alerting AlertManager NA Chosen for exercise
●​ Avoid Alert

Fatigue
●​ Sensible

Escalation
Policies

●​ I will be
primary
on-call
during
launch-week
and post
launch week

●​ Dev team
member to
participate
as
secondary

1. Initial Assessment

Goals:

●​ Understand the current state of the application.
●​ Bridge the knowledge gap between development and DevOps.
●​ Align development practices with production needs.

​
 Assess the current state of the application:

●​ Are there any hardcoded dependencies (e.g., file-based storage, local memory
caches)? - need to move these to arguments that can be read from a config file
managed in a configmap

●​ What are the CPU and Memory Requirements for the application? Is it compute
optimized or memory optimized?

●​ What regions are we targeting to serve the application from? Is it a single region or
multiple regions? - this will help understand compute instance quota determination to
avoid stockouts.

●​ What sort of network throughput is expected, to serve the amount of traffic?
●​ What kind of network considerations? IP space, firewall rules, SSL certs and DNS

entries?
●​ Load Balancing and HA requirements - does this need to be behind an ingress?

Are there path based/hostname based rules to apply? Need to define a scaling
strategy and keep it consistent with load-balancing approach.

●​ Are there metrics currently being considered? Have they been instrumented in the
app? If so, are they being exposed and ready to be scraped?

●​ How are secrets being managed currently? - introduce vault or external-secrets
operator

●​ Are there any service mesh considerations (especially for multi-region comms) - if
so, we’d need to get consul or something similar in each region, so one region can
sync with another region.

●​ Are there any message bus integrations? Common ones used are rabbitmq or
pulsar.

●​ Are there any cronjobs and batch jobs that need to be in place? Would be better to
use kube based manifests for that.

●​ Are there any GDPR and PIPL based considerations to account for before launch?
Need to stay in compliance.

●​ What are the external service dependencies (e.g., databases, APIs)? Is the
database akin to a memory store or a dedicated SQL/Oracle DB? Is it located in the
same datacenter?

Notes

2. Containerization & Deployment Setup

Goals:

●​ Ensure the application is containerized correctly. Multi stage for a leaner image size.
●​ Ensure the image can be built and pushed to a private repo.
●​ Set up Kubernetes deployment manifests using helm charts.
●​ Implement CI/CD for automated deployment.

Actions:

Containerization:

●​ Optimize the Dockerfile for smaller image size and faster builds.
●​ Use multi-stage builds to reduce the final image footprint.
●​ Store images in the company’s container registry.

Kubernetes Deployment Setup:

●​ Define Deployment (replicas, affinity rules).
●​ Use ConfigMaps & Secrets for environment-specific variables.
●​ Set up Services (ClusterIP for internal, LoadBalancer/Ingress for external).
●​ Enable horizontal pod autoscaling (HPA) to scale based on CPU/memory usage.

 CI/CD Pipeline:

●​ Use GitHub Actions to automate builds.
●​ Implement image vulnerability scanning before pushing to the registry.
●​ Automate Kubernetes deployment with ArgoCD and Helm.

Notes

3. Scalability & Performance Optimization

Goals:

●​ Ensure the backend can handle millions of players.
●​ Optimize request handling and database performance.

Actions:

 Load Testing:

●​ Use k6 or Locust to simulate real-world traffic.
●​ Identify performance bottlenecks before launch.
●​ Tune database queries and caching strategies.

Scaling Strategy:

●​ Implement Horizontal Pod Autoscaler (HPA).
●​ Use Cluster Autoscaler to add/remove nodes dynamically.
●​ Cache frequently accessed data using Redis.
●​ Optimize gRPC or WebSocket connections for real-time communication.
●​ GCP Node SKU: Start with N2 or C2 instances (e.g., n2-standard-8 or

c2-standard-8) with 8-16 vCPUs and 32-64 GB RAM per node.
●​ Kubernetes Resource Requests: Set resource requests based on concurrent

player count and expected CPU/memory usage (e.g., 2 vCPUs and 8 GiB memory
per pod).

●​ Scaling: Implement HPA to automatically scale pods based on load, and use Cluster
Autoscaler to manage node scaling.

 Database Considerations:

●​ Ensure database connection pooling is efficient.
●​ Separate read/write instances if using PostgreSQL or MySQL.
●​ Consider sharding if a single database instance won’t handle the load.

Notes

4. Security & Compliance

Goals:

●​ Ensure the application is secure and follows company policies.
●​ Implement necessary authentication and encryption.

Actions:

Secrets Management:

●​ Use Kubernetes Secrets / External Secrets Operator instead of hardcoding
credentials.

●​ Integrate HashiCorp Vault or cloud secret managers if needed (if using cloud-secret
managers, ensure that it syncs those secrets with kube-secrets so that they can be
securely referenced in manifests)

 Network Security:

●​ Restrict inter-service communication using NetworkPolicies.
●​ Use Ingress controllers and Ingress Resources

RBAC & Least Privilege Access:

●​ Enforce Role-Based Access Control (RBAC) in Kubernetes.
●​ Ensure the application runs as a non-root user in containers.
●​ Scan images for vulnerabilities using Trivy or Snyk.

Notes

5. Monitoring & Incident Response

Goals:

●​ Provide visibility into application health and performance.
●​ Set up alerting for proactive issue resolution.

Actions:

Observability Stack:

●​ Use Prometheus & Grafana for real-time metrics.
●​ Set up Loki for centralized logging.
●​ Use Jaeger/Tempo for distributed tracing.

Alerting & Incident Management:

●​ Define SLIs & SLOs for response times, error rates, and latency.
●​ Integrate AlertManager with Slack/PagerDuty for alerts.

6. Knowledge Transfer & Long-Term Ownership

Goals:

●​ Ensure the development team can manage the infrastructure post-launch.
●​ Encourage a DevOps culture within the team.

Notes

Final Outcome
By the end of the engagement, the development team will:​

●​ Have a containerized, scalable, and resilient backend.​

●​ Use a fully automated CI/CD pipeline for deployments.​

●​ Leverage Kubernetes-native tools for monitoring, logging, alerting, scaling, and
other operational tasks associated.​

●​ Gain ownership of operational aspects post-launch.​

●​ Be empowered to manage their infrastructure without DevOps hand-holding.

	Onboarding Document
	Phase 1: Planning and Initial Bootstrap
	Phase 2: 1 Month before launch
	Phase 3: Two Weeks before launch
	Phase 4 : Launch Week
	Phase 5 : Post Launch Tasks

	Production Readiness Checklist
	
	1. Initial Assessment
	Goals:
	​ Assess the current state of the application:

	2. Containerization & Deployment Setup
	Goals:
	Actions:

	
	
	
	
	3. Scalability & Performance Optimization
	Goals:
	Actions:

	
	
	
	4. Security & Compliance
	Goals:
	Actions:

	
	
	
	5. Monitoring & Incident Response
	Goals:
	Actions:

	6. Knowledge Transfer & Long-Term Ownership
	Goals:

	Final Outcome

