Onboarding Document

Knowns:

Developed in C#

Team has been solely focussing on application features

Application runs on local machines

Application expected to handle millions of active players per day

Application mandated to run on Kubernetes

It's only been tested in isolated development environments

Post-Launch, team is expected to independently manage application lifecycle

Phase 1: Planning and Initial Bootstrap

Initial assessment of the app is completed
I am aware of resource requirements[CPU, Memory, SSD 1/0, NW bandwidth],
target regions. Resource reservations and quota securing requests have already
been made.
e Networking configuration, VPCs, subnets and IP address space allocations, ACLs,
firewall rules in place.
e Storage Solutions: Set up buckets for storing cores, terraform states, assets,
binaries.
e Access Control and IAM configurations implemented to ensure the right people
have access to the right dashboards, tools and environments.
e Meeting #1 :
o Introduce containerization: Guide them on how to create Dockerfiles
optimized for production.
o Walk them through Kubernetes fundamentals: Pods, Deployments,
Services, ConfigMaps, Secrets.
Containerize the app, upload the image to a private image repository
Meeting #2:
o Introduce laC concepts and explain benefits
o Walk through a sample and show savings in time and toil
e Infrastructure as Code : source controlled configuration code written in terraform
(with Terragrunt wrapper) and its deployment automation being actively worked on.
e Kubernetes manifests and scaling strategy is actively being worked on, with
results from stress tests instrumented into the configuration
e Relevant namespaces, environments have been set up to support QA and stress
testing.

e Meeting # 3:
o Introduce CI/ICD with the chosen tool

o Show sample jobs and the time saved, toil avoided
Work has begun on setting up CI/CD Pipelines for build, push-to-dev env, QA,
push to prod env
Meeting #4:
o Introduce Auto-Sync and Rollback mechanism
o Schedule a stress test to demonstrate a real-world scenario
o Scaling strategy - whether to use HPA or scale the cluster with more worker
nodes.
o Introduce database management concepts and best practices - connection
pooling, sharding and redundancy
Work has begun to set up contingency plans and rollback options
Meeting #5:
o Introduce Monitoring and show sample metrics being instrumented
o Introduce Logging and show how to triage issues
o Introduce Alerting and show how to set thresholds
o Introduce Visualizations and show how to build dashboards, write queries
Work has begun to instrument logging and mechanism to set up alerts.
Work has begun to identify metrics, workshop visualizations and dashboards
Meeting #6:
o Introduce automated management of certificates, secrets
o Introduce load-balancing concepts and what HA looks like for our
application
Requests for certificate renewals, DNS changes, load-balancer and HA
requirements
Meeting #7:
o Invite security expert and demonstrate the effects of lax security
o Provide samples of good security practices
Security analysis of application conducted by Security Team

Phase 2: 1 Month before launch

CI/CD already set up for build, push and kubernetes deployment

Monitoring, Logging and Alerting tools are already instrumented
Visualizations, dashboards have been set up for specific audiences

Submit cost forecast report to the executive board to keep them informed
Ensure 20-30% burst capacity of launch-limits to ensure we have room to scale.
Alert thresholds codified, escalation policies set up

Additional firewall rules, subnets and other network policies accounted for and
implemented.

Additional stress tests on infra-scaling (cluster autoscaler or terraform based
manual scaling)

App SLOs implemented: Availability, Latency, Error Rate

Player facing SLOs identified and queries written to instrument the SLIs.

Phase 3: Two Weeks before launch

Wind down stress tests

Schedule code-freeze

On-call rotation schedules codified.
Plans for emergency patches in place.

Phase 4 : Launch Week

War Room presence

Serve as primary-on-call and point of contact between dev team and infrastructure
team

Have a member of the dev team shadow as secondary on-call

Jump into outages and incidents to triage and bring the service back to healthy state
Keep stakeholders informed with full transparency of impact, and time-to-resolve
Prioritize people’s health and wellbeing — launch weeks can be stressful but don’t
need to be. Creating an environment of safety and excitement is of utmost
importance.

Phase 5 : Post Launch Tasks

Generate launch report : traffic, deployments, revenue, engagement

Blameless Post Mortem on any incidents: what went well, what can be improved
on.

Office hours for additional support

Identify and codify process for - hotfixes, patching, seasonal-time based events

Documentation & Runbooks:

Create on-call playbooks for common failures.
Document CI/CD workflows and Kubernetes manifests.
Provide troubleshooting guides for scaling and performance issues.

Training & Hands-On Workshops:

Conduct Operations training for developers.

Assign Kubernetes ownership roles within the team.

Encourage developers to monitor dashboards & logs proactively.
Encourage observability-driven development.

Establish a blameless postmortem culture for outages.

| L]
46 Image Pulls

A[cieo—>{</> fat
Push
Terraform

|
Puils Kubemetes auto-deploy

Manifests Sync__y. @. ar Secrets Manager

manual deploy
ARGD-CD Y
source control ¥

A 4

@ Game
Backed
Deployments Kubefnetes
commits and PRs
Game
@ Backed
Deployments DB

Game
@ Backed
\\ Deployments

C# App

1
|

Dev Team OBSERVABILITY

\ (=] ,/) = Logging Prometheus

h

AlertManager Grafana

Production Readiness Checklist

(internal/external)

Item Tools/Language Status Notes
Used
Application Code C# - DotNet In Use Provided
Source Control Github In Use Assumption
Unit Testing Dotnet test and In Use Assumption
xUnit
Local Build Dotnet CLI In Use Assumption
Build Pipeline Github Actions NA Chosen for exercise
Push Pipeline Github Actions NA Chosen for exercise
Image Repository Docker-Hub NA Chosen for exercise
Image Testing Trivy and Snyk NA Chosen for exercise
Infra Node SKU GCP (N2, C2, M2) NA TBD
Infrastructure as Terraform with NA Chosen for exercise
Code Terragrunt wrapper
Kubernetes GKE NA Chosen for exercise
Manifest Helm NA Chosen for exercise
Management
Continuous Delivery | ArgoCD NA Chosen for exercise
Secrets Vault or External NA Chosen for exercise
Management Secrets Operator
Certificate Cert-Manager Helm | NA Chosen for exercise
Management Assumption:
company has a
Certificate Authority
and ACME protocol
compliant
Scaling HPA and Cluster NA Based on CPU and
Autoscaling Memory % targets
Stress Testing In house In Use Assumption
tool/QA/Simulations
Data Cache Redis In Use Assumption
Database SQL based NA Assumption
Load Balancing GCP loadbalancer NA Chosen for exercise

Ingress NGINX Ingress NA TBD
RBAC (SecOps) GCP Service NA TBD
and IAM Accounts, Users

and Groups with

right roles, Kube

Service Accounts
Monitoring Prometheus NA Chosen for exercise
Visualization Grafana NA Chosen for exercise
Logging Loki NA Chosen for exercise
Alerting AlertManager NA Chosen for exercise

Avoid Alert
Fatigue
Sensible
Escalation
Policies

I will be
primary
on-call
during
launch-week
and post
launch week
Dev team
member to
participate
as
secondary

1. In

itial Assessment

Goals:

Understand the current state of the application.
Bridge the knowledge gap between development and DevOps.
Align development practices with production needs.

Assess the current state of the application:

Are there any hardcoded dependencies (e.g., file-based storage, local memory
caches)? - need to move these to arguments that can be read from a config file
managed in a configmap

What are the CPU and Memory Requirements for the application? Is it compute
optimized or memory optimized?

What regions are we targeting to serve the application from? Is it a single region or
multiple regions? - this will help understand compute instance quota determination to
avoid stockouts.

What sort of network throughput is expected, to serve the amount of traffic?

What kind of network considerations? |IP space, firewall rules, SSL certs and DNS
entries?

Load Balancing and HA requirements - does this need to be behind an ingress?
Are there path based/hostname based rules to apply? Need to define a scaling
strategy and keep it consistent with load-balancing approach.

Are there metrics currently being considered? Have they been instrumented in the
app? If so, are they being exposed and ready to be scraped?

How are secrets being managed currently? - introduce vault or external-secrets
operator

Are there any service mesh considerations (especially for multi-region comms) - if
so, we'd need to get consul or something similar in each region, so one region can
sync with another region.

Are there any message bus integrations? Common ones used are rabbitmq or
pulsar.

Are there any cronjobs and batch jobs that need to be in place? Would be better to
use kube based manifests for that.

Are there any GDPR and PIPL based considerations to account for before launch?
Need to stay in compliance.

What are the external service dependencies (e.g., databases, APIs)? Is the
database akin to a memory store or a dedicated SQL/Oracle DB? Is it located in the
same datacenter?

Notes

2. Containerization & Deployment Setup

Goals:
e Ensure the application is containerized correctly. Multi stage for a leaner image size.
e Ensure the image can be built and pushed to a private repo.
e Set up Kubernetes deployment manifests using helm charts.
e Implement CI/CD for automated deployment.

Actions:
Containerization:

e Optimize the Dockerfile for smaller image size and faster builds.
e Use multi-stage builds to reduce the final image footprint.
e Store images in the company’s container registry.

Kubernetes Deployment Setup:

e Define Deployment (replicas, affinity rules).

e Use ConfigMaps & Secrets for environment-specific variables.

e Set up Services (ClusterlP for internal, LoadBalancer/Ingress for external).

e Enable horizontal pod autoscaling (HPA) to scale based on CPU/memory usage.
CI/CD Pipeline:

e Use GitHub Actions to automate builds.
e Implement image vulnerability scanning before pushing to the registry.
e Automate Kubernetes deployment with ArgoCD and Helm.

Notes

3. Scalability & Performance Optimization

Goals:

e Ensure the backend can handle millions of players.
e Optimize request handling and database performance.

Actions:
Load Testing:

e Use k6 or Locust to simulate real-world traffic.
e Identify performance bottlenecks before launch.
e Tune database queries and caching strategies.

Scaling Strategy:

Implement Horizontal Pod Autoscaler (HPA).
Use Cluster Autoscaler to add/remove nodes dynamically.
Cache frequently accessed data using Redis.

Optimize gRPC or WebSocket connections for real-time communication.
GCP Node SKU: Start with N2 or C2 instances (e.g., n2-standard-8 or

c2-standard-8) with 8-16 vCPUs and 32-64 GB RAM per node.
o Kubernetes Resource Requests: Set resource requests based on concurrent
player count and expected CPU/memory usage (e.g., 2 vCPUs and 8 GiB memory

per pod).

e Scaling: Implement HPA to automatically scale pods based on load, and use Cluster

Autoscaler to manage node scaling.
Database Considerations:

e Ensure database connection pooling is efficient.
e Separate read/write instances if using PostgreSQL or MySQL.

e Consider sharding if a single database instance won’t handle the load.

Notes

4. Security & Compliance

Goals:

e Ensure the application is secure and follows company policies.
e Implement necessary authentication and encryption.

Actions:
Secrets Management:

e Use Kubernetes Secrets / External Secrets Operator instead of hardcoding
credentials.

e Integrate HashiCorp Vault or cloud secret managers if needed (if using cloud-secret
managers, ensure that it syncs those secrets with kube-secrets so that they can be
securely referenced in manifests)

Network Security:

e Restrict inter-service communication using NetworkPolicies.
e Use Ingress controllers and Ingress Resources

RBAC & Least Privilege Access:

e Enforce Role-Based Access Control (RBAC) in Kubernetes.
e Ensure the application runs as a non-root user in containers.
e Scan images for vulnerabilities using Trivy or Snyk.

Notes

5. Monitoring & Incident Response

Goals:

e Provide visibility into application health and performance.
e Set up alerting for proactive issue resolution.

Actions:
Observability Stack:

e Use Prometheus & Grafana for real-time metrics.
e Set up Loki for centralized logging.
e Use Jaeger/Tempo for distributed tracing.

Alerting & Incident Management:

e Define SLIs & SLOs for response times, error rates, and latency.
e |Integrate AlertManager with Slack/PagerDuty for alerts.

6. Knowledge Transfer & Long-Term Ownership

Goals:

e Ensure the development team can manage the infrastructure post-launch.
e Encourage a DevOps culture within the team.

Notes

Final Outcome

By the end of the engagement, the development team will:

e Have a containerized, scalable, and resilient backend.
e Use a fully automated CI/CD pipeline for deployments.

e |Leverage Kubernetes-native tools for monitoring, logging, alerting, scaling, and
other operational tasks associated.

e Gain ownership of operational aspects post-launch.

e Be empowered to manage their infrastructure without DevOps hand-holding.

	Onboarding Document
	Phase 1: Planning and Initial Bootstrap
	Phase 2: 1 Month before launch
	Phase 3: Two Weeks before launch
	Phase 4 : Launch Week
	Phase 5 : Post Launch Tasks

	Production Readiness Checklist
	
	1. Initial Assessment
	Goals:
	​ Assess the current state of the application:

	2. Containerization & Deployment Setup
	Goals:
	Actions:

	
	
	
	
	3. Scalability & Performance Optimization
	Goals:
	Actions:

	
	
	
	4. Security & Compliance
	Goals:
	Actions:

	
	
	
	5. Monitoring & Incident Response
	Goals:
	Actions:

	6. Knowledge Transfer & Long-Term Ownership
	Goals:

	Final Outcome

