
Product Roadmap for Observability: Alerting, Logging, and Monitoring
Author: Shreyas Gune (sgune@protonmail.com)

Vision:
To deliver an observability platform that enhances the reliability of the system, mitigates
downtime, and reduces time to detect issues – which would then aid in faster resolution.
We will achieve this through intelligent and comprehensive logging, monitoring and alerting.

Stakeholders Involved and Function

Role Department Function

Observability PM Product Oversee the overall
roadmap, ensure alignment
with business goals.

Engineering Load/Architect Engineering Lead technical evaluation
and tool selection.

DevOps Ops/SRE Implement log aggregation,
metrics collection, and basic
alerting.

SRE Ops/SRE Ensure system reliability
during setup and integration
of monitoring.

Security Lead Security Engineering Ensure observability
systems are secure,
manage access controls.

Customer Support/Success Customer Success Provide feedback from
customers on system
performance issues.

Data Engineer/Analyst Data Engineering Work on advanced metrics
collection and dashboards

UX/UI Designer Product/Design Refine dashboard design
based on feedback.

AI/ML Specialist Machine Learning and AI Develop and optimize AI/ML
models for predictive
analytics.



Phase 1: Discovery and Setup (Month 1 and 2)
Objective: Establish foundational observability features to enable basic monitoring, logging,
and alerting.

Feature Description Estimated
Timeline

Tool Selection and Setup ● Evaluate tool candidates: Prometheus
Stack, ELK stack

● Paid:
○ New Relic
○ Datadog

Month 1

Centralized Log aggregation Implement log aggregation centralize logs across
services
(Fluentd or Loki or ELK stack)

Month 1-2

Basic Metric Collection
(Alerting Metrics as well as
Debugging Metrics)

● Instrument key metrics(CPU,Memory, Disk,
Networking, DBs) for health monitoring.

● Services need to expose the said metrics on
a known standard port, at path “/metrics”

Month 1-2

Threshold-Based Alerting ● Identify relevant metrics to alert on
● Set up Alerting rules in config as code
● Establish Thresholds based on

○ Warning
○ Critical

Month 1-2

Initial Dashboards ● Survey existing dashboards available in the
open source community

● Establish queries that render trends on
relevant business metrics and KPIs

● Instrument panels in MVP dashboards.

Month 3

Notes to iterate on:
‘



Phase 2: Standardization and Optimization (Month 3 and 4)
Objective: Optimize the observability tools and processes, ensuring consistency, reliability,
and actionable insights.

Feature Description Estimated
Timeline

Log Format Standardization Standardize log formats for all services to keep
things consistent

● JSON
● Key-value Pairs

Month 3

SLOs and SLIs ● Identify key metrics to create SLOs out of
that are relevant to the business goals

● Establish SLOs
● Instrument SLIs in services to said SLOs

Month 3

Correlations RCA analysis by correlating logs and metrics Month 4

Alert Tuning Based on incidents, we refine alerts
● Check for false-positives
● Retune thresholds

Month 4

Incident Management Integrate incident management tools
● PagerDuty
● Opsgenie
● VictorOps
● xMatters
● AlertManager hooks
● Slack/Teams integration
● JIRA integration

Month 4

Notes to iterate on:



Phase 3: Advanced Insights and Automation (Month 5 and 6)
Objective: Introduce advanced analytics and automation to streamline monitoring and
incident resolution.

Feature Description Estimated
Timeline

Distributed Tracing Look into implementing tracing using

● OpenTelemetry
● Jaeger or
● Tempo

Month 5

RCA Automation ● Incidents should get pooled into
post-mortem doc, which would then link an
RCA hub

● Relevant links to
○ Dashboard panels in time-window
○ Logs
○ Traces
○ Ad-hoc Queries

Month 5

Custom Dashboards Dashboard Tailored to different teams
● DevOps
● Product
● Sales
● Executive
● Customer Facing (controlled via IAM and

LDAP)

Month 6

Integration with Business
Metrics

Link observability tools with business KPIs (e.g.,
user engagement, transaction success rates) for
broader insights.

Month 6

Notes to iterate on:



Roadmap Summary

Phase Key Milestones Duration
(month #)

1: Discovery and Setup ● Log aggregation,
● Basic metrics,
● Threshold-based alerting,
● Initial dashboards.

1-3

2. Standardization and
Optimization

● Log format standardization,
● SLIs & SLOs,
● Log-metrics correlation,
● Incident management integration,
● Alert sensitivity tuning.

3-4

3. Advanced Analytics and
Automation

● Distributed tracing,
● Root Cause Analysis Automation,
● Advanced Dashboards,
● Business Intelligence

5-6

Gantt Chart and Table, available at: Gantt Chart and Table link

https://shreyasgune.github.io/docs/notes/observability_product_roadmap/ganttchart.html


Future work:
Objective: List of nice to haves and goals to work towards to improve and iterate on existing
observability stack.

Feature Description Additional Notes

Anomaly Detection Introduce anomaly detection to identify
abnormal patterns in metrics/logs.

● Using machine learning models
● Models need to be compliant with

security standards and trained
in-house

Predictive Analytics Develop predictive models to detect
potential incidents before they happen

● Service Degradation
● Catastrophic Outages
● Cascading Failure States

Automated Incident
Response

Implement auto-remediation actions for
certain alerts.

● Scale services automatically
based on load

● Traffic Cutovers
● Version rollbacks and roll

forwards

Intelligent Alerting Introduce AI-driven intelligent alerting to
● Reduce false positives
● Prioritize critical incidents.

Self-Healing Systems Implement self-healing mechanisms
● Auto-scaling
● Service restarts upon anomaly

detection

Enhanced Predictive
Analytics

Extend predictive models to predict
system failures and performance
degradation in real-time.


